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Abstract. The operator content of the cyclic solid-on-solid models is derived under general 
boundary conditions by mapping the row-to-row transfer matrix onto the six-vertex model 
and X X Z  Heisenberg chain. For the shift boundary conditions, the dimensions and spins 
of the primary operators are derived analytically from finite-size corrections to the scaling 
spectra. The full operator content agrees with results for a quantum chain model having 
the same local symmetry. 

1. Introduction 

Recently many hierarchies of solvable two-dimensional lattice models have been found 
(Andrews et a1 1984, Pasquier 1987a, b, c, Kuniba and Yajima 1988a, b).  The adjacency 
graphs of these models are identical to the Dynkin diagrams of classical Lie algebras 
and their affine extensions. One such model is the cyclic solid-on-solid (csos) model 
associated with the AF?, algebra (Pearce and Seaton 1988, 1989, Kuniba and Yajima 
1988b). The adjacency diagram for the csos model is shown in figure 1. The model 
is solvable on a three-dimensional manifold in the full (4L- 1)-dimensional thermo- 
dynamic space and its free energy and local height probabilities have been obtained. 

The partition function of a conformal invariant critical lattice model on a torus is, 
apart from a non-universal bulk term, modular invariant and universal (Cardy 1986a, b, 

Figure 1. The adjacency diagram of the L-state csos model. 
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Itzykson and  Zuber 1986, Di Francesco er a1 1987). It can be constructed from the 
operator content of the model which describes the universal eigenvalue spectra of the 
row-to-row transfer matrix (Cardy 1986, Rittenberg 1988). The operator content is 
sensitive to the boundary conditions ( B C )  and it is of interest to derive the full operator 
content of critical models under general BC. 

At criticality, the exact solution manifold of the csos model collapses onto a line 
parametrised by a single spectral parameter U. In this case the Boltzmann weights of 
a face become identical to those of the six-vertex model. In  this paper we use this 
connection with the six-vertex model to derive the full operator content of the csos 
model under general BC compatible with toroidal boundary conditions. We d o  not 
consider free or fixed boundary conditions. 

In the next section we define the csos models and introduce 2 L  BC as elements of 
the local symmetry group. These consist of L shift and L reflection BC. In § 3 the 
transfer matrix of the critical csos model with shift BC is mapped to that of the 
six-vertex model with a seam along the first column. We use the Bethe ansatz and 
associated analytic methods (Woynarowich 1987, Hamer er a1 1987) to derive the 
dimensions and spins of the primary operators from finite-size effects (Cardy 1986, 
1989). In § 4, we consider the reflection BC. In this case, the transfer matrix of the 
csos model corresponds to the six-vertex model with antiperiodic BC on horizontal 
arrows. This maps, in the extreme anisotropic limit, to the X X Z  Heisenberg chain 
with the charge conjugation BC. We are therefore able to use the results for the X X Z  
chain (Alcaraz et a1 1988a) to deduce the full operator content. In the last section, 
we discuss our results and  compare with the results of von Gehlen er a1 (1988) for 
quantum chain models having the same symmetry. For L odd, we are led to introduce 
an  extended version of the model for a proper interpretation of the spectra. 

2. The model, symmetry and boundary conditions 

The csos model is an L-state I R F  (or interaction-round-a-face) model on the square 
lattice (Baxter 1982). The spins or heights on each lattice site take the integer values 
0, 1, . . . , L - 1 and are denoted by a,  6, c, d ,  etc; all heights being interpreted modulo 
L. The heights of adjacent sites are restricted to differ by *1 mod L and the height L 
is identified with 0. In  the csos model there are thus six types of allowed non-zero 
face weights. To each type one can assign a vertex configuration as shown in figure 
2. Strictly speaking, when L = 4 two additional vertices, with all arrows going in or 
out, satisfy the adjacency conditions. These occur in the eight-vertex model but are 
not allowed in the csos models. 

The elliptic function parametrisation of the csos face weights is given in Pearce 
and Seaton (1988, 1989). It is 
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w* w5 W6 

Figure 2. The  six types of non-vanishing face weights of the csos model and  assignment 
of six-vertex arrow configurations. 

where 6, and  O4 are the usual elliptic functions (Gradshteyn and Ryzhik 1980) and  
w, = wo+ aA. The crossing parameter A can take any of a set of discrete values: 

A = m / L  ( 2 )  
with s = 1 , 2 , .  . . , L -  1 coprime to L. L and s are the model parameters and w,,, U 
and the nome of the elliptic functions are the thermodynamic variables. In general, 
the face weights contain an angle variable wo and are height dependent. However, at 
criticality, these face weights become invariant under a shift of heights and with a 
suitable normalisation assume the simple form 

w, = w2= 1 

W, = W, = sin u/sin(A - U 1 (3) 
W, = W, = sin A /sin ( A - U 1. 

These are precisely the weights of the critical six-vertex model. 
To discuss symmetry and  BC, let us introduce 2 L  operators acting on the heights by 

C ' a = I + a  (shifts) 

Z'Ca = I - a (reflections) 

l E S ~ ' ( 0 , l )  . . . ,  L - l } .  
(4) 

These operators, which leave the face weights (3) invariant, form the dihedral group 
DL,  which is the local symmetry group of the model. To each g e  DL, we associate a 
BC a,%+, = g a ,  , where N is the width of the lattice. When L is even, N + 1 must be 
even for both C' and X'C. The transfer matrix V,,  associated with the BC g, is then 
defined via its elements as 
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where a = { a ,  , . , , , a,} and b = (61,. . . , b y }  are arbitrary allowed configurations of a 
row, a,+1 = ga,, b,,, = gb, and W(a ,  b, c, d )  is the weight of a face with heights a, 
b, c, d given counterclockwise starting from the lower left corner. A row configuration 
a = { a , ,  . . . , ah.'} can also be represented by ( a , ,  a) where a = {cr,, . . . , uN} and 
U, = a,,, -a , .  With the identification of (7, = 1 (-1) to the up  (down) arrow in the ith 
vertical bond, a also stands for an  arrow configuration. The global symmetry group 
G, of V, consists of all elements of DL which commute with g. It is DL for g =CO 
and also for EL'2 when L is even but ZL for other E'. Similarly, it is Z2 x Z2 (Zz)  for 
E'C, 1 E S ,  when L is even (odd).  Group elements g in the same conjugacy class lead 
to the same V, and hence to the same operator content. The conjugacy classes of DL 
are 

{E."}, {E', EL-'} ( I  = 1 , .  . . , ( L -  1)/2);  {E'C 11 E S,}  (6) 

for odd L and 

{E", {CL'*} ,  {E', P'} ( I =  1 , .  . . , L / 2 - 1 ) ;  

{Z'C 11 = even}, {Z'C 11 = odd} 
( 7 )  

for even L. 

3. Operator content for g = E' 

Consider the row-to-row transfer matrix V, under the BC g =E', 1 E S , .  An allowed 
row configuration ( a , ,  a) then satisfies the BC only if 

N 

a , = 2 Q = l + n L  
i = l  

where the winding number n takes the values 

n E Z  for N + I  even and L even 

n ~ 2 Z  for N + 1 even and L odd (9) 

n c 2 Z + 1  for N + 1 odd and L odd 

with Z = (0, * l ,  1 2 , .  . .}. The 'charge' Q defined in (8) is a conserved quantity because 
of the six-vertex constraints, and hence each charge sector can be treated separately. 
Furthermore, exploiting the Z ,  symmetry, we can separate V, into L sectors of 'Z, 
charge' P E  S ,  via a similarity transformation. Hence 

where 0 denotes direct sum and the elements of VLp' are given by 

vip ' ( (T I (T ' ) = w - 'v, ( 0, (T 1 - 1, a') + w 'v, (0, U 1 1, a') (11) 

with w = e x p ( 2 r i / l ) .  Apart from the w f p  factors, the right-hand side of (11) is 
precisely the transfer matrix elements of the six-vertex model, the two terms correspond- 
ing to the two horizontal arrow directions. The extra phase factors can be incorporated 
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simply by introducing a seam along the first column of the lattice where the vertex 
weights are modified to 

w: = w - p w ,  

w; = w p w ,  

for i = 1 , 3 , 5  

for i = 2 , 4 , 6  

where Wi are given by (3). 
The transfer matrix of the csos model with BC Z' is thus a direct sum over appropriate 

charge sectors of those of the six-vertex model with a seam. Fortunately, the seam 
does not prevent diagonalisation using the Bethe ansatz. A straightforward calculation 
following Baxter (1982) yields the eigenvalue expressions for V r '  in the sector Q as 

where M = N / 2  - Q is the number of down arrows and 

exp(2ui) -exp(2x -Ai) 
exp(2x) -exp(2ui - -Ai) '  

L(x, U )  = 

The zeros {x, Ij = 1 , 2 , .  . . , M }  are the solutions of the Bethe ansatz equations: 

I , /N=Z,(x,)  j = 1 , 2 ,  . . . ,  M (15) 

(16) ) 
M 

Z , ~ ( X ) = ( ~ T ) - '  O(X, A/2)- N-' 1 O(X-X,, A )  - 4 / 2 ~ N  i J = l  

where 4 = ~ T P /  L and 

O(x, A )  = 2  tan-'(tanh x/tan A ) .  (17) 

For the largest eigenvalue in each sector the integers or  half-integers I ,  should be 
chosen as 

(18) 

for 4/27r<t.  Other leading eigenvalues are obtained by choosing I, -- 
- ( M +  1 ) / 2 + j + m  (m E Z) (Alcaraz et a1 1988b). This is the same as using (18) and 
shifting I ,  in (15) to I , + m .  We absorb this shift into the definition of Z,(x) and  
redefine 4 as 

(19) 

By varying m, we obtain a sequence of eigenvalues. These eigenvalues A depend on 
1 and n through Q in (8) and  on P and m through q!~ 

The Bethe ansatz equations ( l S ) - (  18) are the same as those obtained for the XXZ 
chain under a twisted BC with twisting angle 4 (Alcaraz er a1 1988b, Hamer et a1 1987). 
Moreover, in the quantum chain limit U + 0, the eigenvalue expression becomes 

41257 = 2 P/ L + m. 

2u M 
lnA4=-2 . r rP i /L+i  c O(xJ,A/2)+- {cos[@(xJ,A/2)]+cosA}. 

J - 1  sin A J = I  

The real part of the right-hand side of (20) is the XXZ chain energy. Therefore the 
operator content can be directly inferred, at  least in the U + 0 limit, from known results 
for the XXZ chain (Alcaraz et a1 1988a, Rittenberg 1988). One can go further and  
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calculate analytically the finite-size corrections to the eigenvalues following the methods 
of Woynarovich and Eckle (1987), Woynarovich (1987), Hamer et a1 (1987) and Hamer 
and Batchelor (1988). In this way the scaling dimensions and spins of the corresponding 
scaling oeprators can be obtained (Cardy 1986a, b).  

The difference between the X X Z  chain, treated by the above authors, and the csos 
model is in the expression for the eigenvalues. For simplicity, we first treat the case 
0 < U < A/2. The result then readily extends to 0 < U < A by symmetry and  continuity 
arguments. When 0 < u < A/2, the first term in (13) dominates the second term exponen- 
tially, so we drop the second term. The eigenvalues for finite N can then be written as 

(21 1 

where 6,(x) = N-’  X f z l  S(x-x,) .  The function In L(x, U )  can be represented in the 
form 

N-’ In A = -2nPi/  LN + In L(x, u ) S ,  (x) d x  I-: 
sinh[( n - A)q/2] 

exp( uq + ixq) dq I - x  q sinh( 7rq/2) 
In L(x, U )  = P 

where P here stands for the principal value. Using this representation and  proceeding 
as in Hamer et a1 (1987), we find the intermediate expression for the finite-size correction 
as 

where 

and 

exp( uq + iqx) 
--3: 29 cosh( A q / 2 )  d 4. H ( x )  = P 

The integral in (24) can be evaluated explicitly by residue calculus but it suffices here 
to note that, as x + s, 

H ( x ) - i [ n / 2 - 2  C O S ( T U / ~ )  exp(-nx/A)]+2 sin(7rulA) exp(-rrx/A) ( 2 5 )  

and H ( x )  = H(-x)* .  This is to be compared with equation (2.61) of Hamer et a1 
(1987). Then, following Hamer et a1 all 1/ N terms cancel out and after a straightfor- 
ward calculation we finally obtain for large N 

A (  N - ’  In .I) = -2?rN-’sin( m / A  ) ( X  - c/ 12) -2n iN- ’  cos(n-u/A)S (26) 

S = Q(4/27r)  (28) 

= (n- A ) / ~ T ~ . = ( L - s ) / ~ L .  (29) 

where c = 1 is the central charge, 7 and 4/2n are given by (8) and  (19)  and 
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The sine and  cosine factors in (26) are precisely the anisotropy factors discussed in 
Kim and Pearce (1987). The scaling dimensions X and the spins S agree with the 
expected operator content of the X X Z  chain as discussed in Alcaraz et a1 (1988a, b).  
A more detailed analysis of the six-vertex model spectra appears in Karowski (1988). 

Alcaraz et a1 (1988a) conjecture that the scaling dimensions given by ( 2 7 ) ,  together 
with (19), are in fact the complete set for the primary operators in each charge Q 
sector. We also assume this. Following Alcaraz et a1 (1988a), we express the operator 
content in terms of the irreducible representations ( A ,  A )  of the two commuting U( 1)  
Kac-Moody algebras. If we denote by E f  (C l )  the operator content of the csos model 
in the sector with ZL charge P under the BC E', we then have 

& ( C l ) =  0 ( 
where the sum over the winding number n is as given by (9). 

1 (30) 
[ ~ P / L +  m + x p ( l +  n ~ ) ] ?  [ ~ P / L +  m -x,(l+ n ~ ) ] '  

m G Z , n  8% 8% 

4. Operator content for g = Z'C 

We now consider the BC g = C'C, 1 E SL. An allowed row configuration ( a , ,  a )  should 
then satisfy 

.? 

U N + ,  = a, + U, = 1 - a ,  (mod L ) .  
r = l  

When L is odd, there is always a unique height for a ,  that satisfies (31) for a given 
a. When L is even, there are always two such heights which differ by L/2.  Therefore, 
there exists a one-to-one (two-to-one) correspondence when L is odd (even) between 
the csos states with g =E' and vertical arrow configurations. 

First consider the L odd cases. Rows and  columns of the row-to-row transfer 
matrix V, can now be designated by a. Non-vanishing elements V,( a 1 a') of V, are 
products of the six-vertex weights of (3). Let a ,  ( a : )  be the height of the first column 
and M ( M ' )  be the total number of down arrows in a configuration a (a') .  From 
(31) we have a, -a ' ,=  M - M ' ( m o d L ) .  Also [ M - M ' l s l  for a row of six-vertex 
configurations since the vertices of type 5 and 6 in figure 2 alternate. Therefore 
V , ( a  1 a') is non-zero only when 

lM - M ' /  = 1. (32) 

An extra down arrow in the top or  bottom row of vertical bonds in a six-vertex 
configuration causes the first and last horizontal arrows to point in opposite directions. 
A typical configuration is shown in figure 3. Hence V, is the same as the transfer 

Figure 3. A typical vertex configuration associated to a non-vanishing element of the 
transfer matrix when g = X3C for L = 5 and N = 5.  
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(Baxter 

Wu(p, (7 

where 6 

matrix of the six-vertex model under antiperiodic BC and is independent of 1. Let 
Wu(p, uI U ‘ ,  v )  by the Boltzmann weight of a vertex where p, U, U’ ,  v ( = + 1 )  designate 
the arrow directions of the four incident bonds as shown in figure 4. The sign convention 
is such that $ 1  indicates right or up arrows. For the weights given by (3) ,  we have 

982) 

where pNtl  = - p i  and the sum is over the horizontal configurations { p l ,  . . . , P , ~ } .  
The transfer matrix (34) has an arrow reversal quantum number. In terms of the 

csos language it is the quantum number * 1  of the operator Z’C. On the other hand, 
the charge Q is not conserved due to (32) and the Bethe ansatz cannot be applied to 
(34). However, the spectral parameter U does not play a role in the operator content 
except through the anisotropy scaling factor as indicated in (26) (Kim and Pearce 
1987). Therefore we may take the logarithmic derivative of (34) with respect to U at 
U = 0, thereby mapping the model to the X X Z  chain. Following the standard procedure 
(Baxter 1982, p 260), we find, as U + 0, 

V, = V:  exp[-s in(~u/A)f i ]  (35) 

where V i  is (34) at U = 0 and l? is given by 

with the BC 

u.h+I = U; N + ,  = -a; u;v+l = - U ; .  (37 )  U? 

Here ux, U? and U’ are the Pauli spin operators. Th: arrow reversal operation in (34) 
is translated into the charge conjugation operator C in the X X Z  model and (37) is 
the charge conjugation BC. 

a’ 

V 

a 
Figure 4. The index convention for the vertex weight 
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Let us denote the operator content of the csos model under the BC C’C in the 
sector X‘C = v (=*I )  by Ec,(X’).  The operator content is then the same as that of ( 3 6 )  
and ( 3 7 )  in the sector e = v. In  ( 3 6 )  and ( 3 7 ) ,  there is an extra quantum number 
associated with the parity of the number of down arrows for even N. However, this 
is not a quantum number for ( 3 4 ) .  Using the result of Alcaraz et a1 (1988a), we obtain 

for N even and 

as defined in Alcaraz et a1 (1  988a). 
We next consider the L even cases. For a given a, there exist two states connected 

by C L i 2 ;  (a ,  a) and ( a  + L / 2 ,  a )  where a = 1 /2 -  Q. For any non-vanishing matrix 
element V,( a, a 1 a’,  a’) ( la  - a’l = l ) ,  we have 

V , ( a , a / a ’ , a ’ ) =  V g ( a + L / 2 ,  a I a ’ + L / 2 , a ’ )  

V g ( a , a I a ’ + L / 2 , a ’ ) =  V g ( a + L / 2 , a I u ’ , o ’ ) = 0 .  

Therefore we can separate V, into two identical diagonal sectors, each of which is 
itself the same as ( 3 4 ) .  We designate these two sectors with the quantum number of 
CL”. When L is even, we have N + 1 even. Consequently the operator content for 
each C L i 2 = * l  sector is given by ( 3 8 )  when 1 is even and by ( 3 9 )  when 1 is odd. 
Denoting the operator content for the sector CL’> = v and C’C = v’ by E,,,,,(X.‘C), we 
have 

5. Discussion 

We have obtained the full operator content of the critical csos transfer matrix under 
general BC. This is done by mapping the csos model to the six-vertex model and the 
X X Z  chain. The completeness of our results is, in  fact, a conjecture based on the 
X X Z  chain results of Alcaraz et a1 (1988a). As demanded by consistency, the operator 
content for g belonging to the same conjugacy class is the same. Moreover, although 
formula ( 3 0 )  applies for g =Cl and general 1, the extra symmetry for Lo, and also for 
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EL" when L is even, is reflected in the appearance of extra degeneracies in (30) when 
I = 0 or L/2. 

The scaling dimensions appearing in (30) are of the form 

L - s  ( 2 ~ +  mL)2 
8L 2 L ( L - s )  

X = -  ( I +  nL)'+ (44) 

where (29) is used. Pearce and Seaton (1989) obtained the critical exponents for 
2[ ( L  - 1)/2] complex order parameters, [ .  . . ]  denoting the integer part. The scaling 
dimensions corresponding to these order parameters are found to be 

( L - 2j)* 
2L(L-  s )  2L(L-  s) 

j =  1 , 2 , .  . . , [ (L-1 ) /2 ]  (2j)' 
(45) 

each repeated twice. These exponents are generated in the second term on the 
right-hand side of (44) by choosing P =j, m = 0 or -1  and P = L-j,  m = -2 or - 1 .  
The exponent associated with the temperature-like variable, the nome of elliptic 
functions, is 2(L - s)/  L and is also contained in the second term in (44). When s > L/2 
the temperature-like variable also plays the role of a field conjugate to one of the order 
parameters. 

The set 

{ 2 P + m L I P e S L ,  m E Z }  (46) 

appearing in (30) and (44) is equal to 2 for L odd but is 2 2 0 2 2  for L even. Therefore 
each operator appears exactly twice for L even. This is due to the fact that, for L even 
and hence N + I even, the lattice is decomposed into two sublattices, each having all 
even or all odd heights and, the two possibilities being equivalent, the partition function 
picks up a trivial factor of 2 (Andrews et aI 1984). This does not contradict the 
Perron-Frobenius theorem. One can remove this trivial degeneracy either by taking 
m to be even integers or by restricting P to take the values 0, 1 , .  . . , L/2 - 1 .  When 
L/2 is odd, the same effect is achieved by restricting P to be even or odd. 

von Gehlen et a /  (1988) have studied L-state ( L z 5 )  quantum chains having the 
same DL symmetry. When L is even, the operator content they obtain in the c = 1 
region of the models is the same as our result for all BC as long as all sectors are 
combined and the degeneracy discussed above is taken into account. In this correspon- 
dence, the coupling constant g in equation (5.7) of von Gehlen et a1 (1988) is identified 
as xpL/2 = (L - s)/4. However, the distribution of operators into various sectors is 
slightly different when the BC is E ' C  It depends on whether I is even or odd in the 
csos model as given by (42) and (43), whereas it is given by (42), apart from the factor 
of 2, for all I in the quantum chain. Pasquier ( 1 9 8 7 ~ )  constructed a modular invariant 
partition function for a csos model on a torus under periodic boundary conditions. 
Our result (30) for g = CO and for L even extends his result. In  particular, the coupling 
constant g = 1 in equation (18) of Pasquier ( 1 9 8 7 ~ )  is replaced by g = (L - s)/  L. 

When L is odd, the operator content of the csos model depends on the parity of 
N. This is a characteristic of models involving sublattice symmetry breaking. For the 
interacting hard square model (Baxter and Pearce 1983) and the magnetic hard square 
model (Pearce and Kim 1987), the operator content under periodic boundary conditions 
with odd N is given by that of the corresponding quantum models with antiperiodic 
(Kim 1988) and the twisted (Kim et a1 1988) BC, respectively. This is naturally explained 
by considering extended models where the spin states now carry the sublattice indices 
(Choi et a/ 1989). It is in this sense that the four-state RSOS A4 model of Andrews et 
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a1 and the six-state D:" (Kuniba and Yajima 1988b) or 8, (Pasquier 1987a, b)  
model are equivalent to the hard square and the magnetic hard square model, 
respectively. Thus, to compare our odd L result with the quantum chains, we are led 
to consider extended models when L is odd. In the extended models, the heights can 
take 2 L  values (0 ,  1, . . . , L - 1,s, 1, . . . , m} and the adjacency condition is as shown 
in figure 5. The face weights remain the same as in the L-state model and do not 
distinguish between the states a and 6. Simple relabelling of the heights then reduces 
it to the 2L-state csos model. In the extended scheme, X 2 "  and X*"C, Z ' E  S L ,  are the 
BC which do not mix the two sublattices. The transfer matrix of the extended model 
under the BC X' and 1 E S L ,  can both be put in the block form 

where V, is the transfer matrix of the original L-state model under the same BC g =X' 
but with N + t  even (odd) for the former (latter). The same is also true for Z'C and 
Z'+LC. Using this connection, one can, in fact, derive the odd L result from the even 
2L result. If we consider only the subset of the BC Z2" and X2"C, I '  E S L ,  in the extended 
model, the operator content is then the same, sector by sector, as that of the L-state 
( L  odd) quantum model under the BC XI' and Z"C, respectively. In this case the 
coupling constant of von Gehlen er a1 (1988) is identified as 2Lx, = L - s. 

Figure 5. The adjacency diagram for the extended 2L-state model for L = 5 .  
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